Systems of Equations The LU Factorization 解方程A x = b Ax = b A x = b ,将A A A 分解为L U LU LU ,L U LU LU 分别为lower triangular , upper triangular
A x = b L U x = b
\begin{align}
Ax &= b \\
LUx &= b \\
\end{align}
A x LUx = b = b 然后解方程
L c = b U x = c
\begin{align}
Lc &= b \\
Ux &= c
\end{align}
L c Ux = b = c 先计算出c c c 然后计算x x x
LU 分解步骤
A = [ 2 1 5 4 4 − 4 1 3 1 ] , P = [ 1 0 0 0 1 0 0 0 1 ] , L = [ 1 0 0 0 1 0 0 0 1 ] [ 2 1 5 4 4 − 4 1 3 1 ] ⟶ exchange rows 1 and 2 [ 4 4 − 4 2 1 5 1 3 1 ] , [ 1 0 0 0 1 0 0 0 1 ] ⟶ exchange rows 1 and 2 [ 0 1 0 1 0 0 0 0 1 ] , L have no change [ 2 1 5 4 4 − 4 1 3 1 ] ⟶ s u b t r a c t 1 2 × row 1 from row 2 [ 4 4 − 4 2 1 5 1 3 1 ] , [ 1 0 0 0 1 0 0 0 1 ] ⟶ exchange rows 1 and 2 [ 0 1 0 1 0 0 0 0 1 ] , L have no change
\begin{align}
&
A =
\begin{bmatrix}
2 & 1 & 5 \\
4 & 4 & -4 \\
1 & 3 & 1
\end{bmatrix}
,P =
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
,L =
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\\\\
&
\begin{bmatrix}
2 & 1 & 5 \\
4 & 4 & -4 \\
1 & 3 & 1
\end{bmatrix}
\overset{\text{exchange rows 1 and 2}}{\longrightarrow}
\begin{bmatrix}
4 & 4 & -4 \\
2 & 1 & 5 \\
1 & 3 & 1
\end{bmatrix}
,
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\overset{\text{exchange rows 1 and 2}}{\longrightarrow}
\begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
,\text{L have no change}
\\\\
&
\begin{bmatrix}
2 & 1 & 5 \\
4 & 4 & -4 \\
1 & 3 & 1
\end{bmatrix}
\overset{subtract \frac{1}{2}\times \text{row 1 from row 2}}{\longrightarrow}
\begin{bmatrix}
4 & 4 & -4 \\
2 & 1 & 5 \\
1 & 3 & 1
\end{bmatrix}
,
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\overset{\text{exchange rows 1 and 2}}{\longrightarrow}
\begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
,\text{L have no change}
\end {align}
A = 2 4 1 1 4 3 5 − 4 1 , P = 1 0 0 0 1 0 0 0 1 , L = 1 0 0 0 1 0 0 0 1 2 4 1 1 4 3 5 − 4 1 ⟶ exchange rows 1 and 2 4 2 1 4 1 3 − 4 5 1 , 1 0 0 0 1 0 0 0 1 ⟶ exchange rows 1 and 2 0 1 0 1 0 0 0 0 1 , L have no change 2 4 1 1 4 3 5 − 4 1 ⟶ s u b t r a c t 2 1 × row 1 from row 2 4 2 1 4 1 3 − 4 5 1 , 1 0 0 0 1 0 0 0 1 ⟶ exchange rows 1 and 2 0 1 0 1 0 0 0 0 1 , L have no change Iterative methods Jacobi Method D denote the main diagonal of A, L denote the lower triangle of A (entries below the main diagonal), and U denote the upper triangle (entries above the main diagonal)
A x = b ( D + L + U ) x = b D x = b − ( L + U ) x x = D − 1 ( b − ( L + U ) x )
\begin{align}
Ax &= b \\
(D+L+U)x &= b\\
Dx &= b-(L+U)x \\
x &= D^{-1}(b-(L+U)x)
\end{align}
A x ( D + L + U ) x D x x = b = b = b − ( L + U ) x = D − 1 ( b − ( L + U ) x ) Example:
[ 1 1 3 − 4 ] = L U = [ 1 0 3 1 ] [ 1 1 0 − 7 ] [ 1 0 3 1 ] [ c 1 c 2 ] = [ 3 2 ] c 1 = 3 , c 2 = − 7 [ 1 1 0 − 7 ] [ x 1 x 2 ] = [ 3 − 7 ] x 1 = 2 , x 2 = 1
\begin{align}
& \begin{bmatrix}
1 & 1 \\
3 & -4
\end{bmatrix} = LU =
\begin{bmatrix}
1 & 0 \\
3 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
0 & -7
\end{bmatrix} \\\\
& \begin{bmatrix}
1 & 0 \\
3 & 1
\end{bmatrix}
\begin{bmatrix}
c_1 \\ c_2
\end{bmatrix}
=
\begin{bmatrix}
3 \\ 2
\end{bmatrix} \\\\
& c_1 = 3 , c_2 = -7 \\\\
&
\begin{bmatrix}
1 & 1 \\
0 & -7
\end{bmatrix}
\begin{bmatrix}
x_1 \\ x_2
\end{bmatrix}
=
\begin{bmatrix}
3 \\ -7
\end{bmatrix} \\\\
&
x_1 = 2 , x_2 = 1
\end{align}
[ 1 3 1 − 4 ] = LU = [ 1 3 0 1 ] [ 1 0 1 − 7 ] [ 1 3 0 1 ] [ c 1 c 2 ] = [ 3 2 ] c 1 = 3 , c 2 = − 7 [ 1 0 1 − 7 ] [ x 1 x 2 ] = [ 3 − 7 ] x 1 = 2 , x 2 = 1 Methods for symmetric positive-definite matrices n × n n\times n n × n matrix A A A is symmetric if A T = A A^T = A A T = A .The matrix A is positive-definite if x T A x > 0 x^TAx>0 x T A x > 0 for all vectors x ≠ 0 x\ne 0 x = 0