# 基础

# 极限

# 单侧极限

limx21x2=limx2+1x2=+ \lim_{x\to2}\frac{1}{x-2} = -\infty \\ \lim_{x\to2^{+}}\frac{1}{x-2} = +\infty \\

x2+x\to2^{+} 表示让xx从右边向22靠拢

极限存在时,是指左右两边的极限都存在,而且相等


🌟limx(1+1x)x=e 🌟\lim_{x\to\infty} (1+\frac{1}{x})^x = e

# 连续性

# 连续性的三个条件

定义:f(x)f(x)x=ax=a是连续的,条件有三:
1.f(a)f(a)是有定义的,即x=ax=a落在函数定义域内
2.limxaf(x)\lim_{x\to a}f(x)存在
3.limxaf(x)=f(a)\lim_{x\to a}f(x) = f(a)

# 导数

# 导数的极限定义

定义 函数g(x)g(x)xx处的导数,写成g(x)g^{\prime}(x),而且定义为(有多种形式的写法)

g(x)=limh0g(x+h)g(x)h(形式1)g(x)=limΔx0g(x+Δx)g(x)Δx(形式2)g(x)=limxag(x)g(a)xa(形式3) \begin{align} g^{\prime}(x) &= \lim_{h\to 0}\frac{g(x+h) - g(x)}{h} &\quad{(形式1)} \\ g^{\prime}(x) &= \lim_{\Delta x\to 0}\frac{g(x+\Delta x) - g(x)}{\Delta x} &\quad{(形式2)} \\ g^{\prime}(x) &= \lim_{x\to a}\frac{g(x) - g(a)}{x-a} &\quad{(形式3)} \end{align}

例子

f(x)=x2f(x)=limh0f(x+h)f(x)h=limh0x2+2xh+h2x2h=limh02xh+h2h=limh0(2x+h)=2x f(x) = x^2 \\\\ \begin{align} f'(x) &= \lim_{h\to 0}\frac{f(x+h)-f(x)}{h} \\ &= \lim_{h\to 0}\frac{x^2+2xh+h^2-x^2}{h} \\ &= \lim_{h\to 0}\frac{2xh+h^2}{h} \\ &= \lim_{h\to 0}(2x+h) = 2x \\ \end{align}

有的时候,limh0g(x+h)g(x)h\lim_{h\to 0}\frac{g(x+h) - g(x)}{h}不存在,这种情况下,我们说导数g(x)g^{\prime}(x)没有定义

# 求导的简单方法

# 幂法则

ddx(xn)=nxn1 \frac{d}{dx}(x^n) = nx^{n-1}

# 积法则

ddx(fg)=fg+fg \frac{d}{dx}(fg) = f^{\prime}g + fg^{\prime}

# 商法则

ddx(fg)=fgfgg2 \frac{d}{dx}(\frac{f}{g}) = \frac{f^{\prime}g - fg^{\prime}}{g^2}

# 三角函数的导数

ddx(sinx)=cosxddx(cosx)=sinx \frac{d}{dx}(\sin x)=\cos x \\ \frac{d}{dx}(\cos x)=-\sin x

f(n)(x)f^{(n)}(x) 指的是 f(x)f(x)nn阶导数

# 链式法则

ddxf(g(x))=f(g(x))g(x) \frac{d}{dx}f(g(x)) = f^{\prime}(g(x))g^{\prime}(x)

例1:

ddx(3x5)=ddx((3x5)1/2)=12(3x5)1/2(15x4) \frac{d}{dx}(\sqrt{3x^5}) = \frac{d}{dx}((3x^5)^{1/2}) = \frac{1}{2}(3x^5)^{-1/2}(15x^4)

3x53x^5看做是整体

例2: k(x)=(cos(xx))3k(x) = (cos(\sqrt{x}-x))^3,求k(x)k^{\prime}(x)

解:


f(x)=xxg(x)=cosxh(x)=x3k(x)=h(g(f(x)))k(x)=(h(g(f(x))))=h(g(f(x)))(g(f(x)))=h(g(f(x)))g(f(x))f(x)=3(cos(xx))2(sin(xx))(12(x)121) \begin{align} f(x) &= \sqrt{x} - x \\ g(x) &= \cos x \\ h(x) &= x^3 \\\\ k(x) &= h(g(f(x)))\\ k^{\prime}(x) &= (h(g(f(x))))^{\prime} \\ &= h^{\prime}(g(f(x)))(g(f(x)))^{\prime} \\ &= h^{\prime}(g(f(x)))g^{\prime}(f(x))f^{\prime}(x) \\ &= 3(cos(\sqrt{x}-x))^2(-\sin (\sqrt{x}-x))(\frac{1}{2}(x)^{-\frac{1}{2}}-1) \end{align}

# 极大值极小值

导数等于0或者导数不存在的点,都有可能是局部极大值或局部极小值。所有这些点的xx值,都称为临界点

如果x=ax=a是个临界点,且f(a)=0f^{\prime}(a) = 0,则:
1.若 f(a)>0f^{\prime \prime}(a)>0,则函数在x=ax=a有局部极小值
1.若 f(a)<0f^{\prime \prime}(a)<0,则函数在x=ax=a有局部极大值

# 隐微分法

隐函数求导

把y想成是x的函数,最后得到的导数,把它特别写成dydx\frac{dy}{dx}

例子: 对隐函数 y2+xy+3x=9y^2 + xy + 3x = 9 求导

y2y^2用链式法则处理,xyxy用积法则

y2+xy+3x=92ydydx+y+xdydx+3=0dydx=y32y+x y^2 + xy + 3x = 9 \\ 2y\frac{dy}{dx} + y + x\frac{dy}{dx} +3 =0 \\ \frac{dy}{dx} = \frac{-y-3}{2y+x}

找出曲线上点(2,1)的导数,需要把xxyy均代入,得到

dydx(2,1)=1321+2=1 \left. \frac{dy}{dx} \right| _{(2,1)} = \frac{-1 -3}{2\cdot 1 +2} = -1

# 相关变化率

例题:假设xxyy都会随着tt变化,而且不管tt是和值,xxyy都满足一个关系式:sinx+cosy=1\sin x + \cos y = 1,求当x=π6y=π3x=\frac{\pi}{6},y=\frac{\pi}{3}dxdt=2\frac{dx}{dt}=2时的dydt\frac{dy}{dt}

xxyy都当做tt的函数来处理:

sinx+cosy=1cosxdxdtsinydydt=0 \sin x + \cos y = 1 \\ \cos x \frac{dx}{dt} - \sin y \frac{dy}{dt} = 0

代入求解 dydt=2\frac{dy}{dt} = 2

# 介值定理与中值定理

# 介值定理

如果在[a,b][a,b]区间上有一个连续的函数ff,且pp是介于f(a)f(a)f(b)f(b)之间的任何一个数值,则在[a,b][a,b]区间上必须存在一个数cc,使得f(c)=pf(c) = p

# 罗尔定理

若函数f(x)f(x)[a,b][a,b]区间上连续而且可微,且若f(a)=0,f(b)=0f(a) = 0,f(b) = 0,则在区间[a,b][a,b]内必须存在一点cc,使得f(c)=0f^{\prime}(c) = 0

# 中值定理

若函数f(x)f(x)[a,b][a,b]区间上连续可微,则在该区间内必存在一点cc,使f(c)=f(b)f(a)baf^{\prime}(c) = \frac{f(b)-f(a)}{b-a}

中值定理就是罗尔定理的结果衍生出来的

# 积分

# 不定积分

ddx(x2)=2x \frac{d}{dx}(x^2) = 2x

所以x2x^2f(x)=2xf(x)=2x的一个反导数,以符号表示,可以写成

2xdx=x2 \int 2xdx = x^2

2x2x被称为被积函数

2dx=2x+C\int 2dx = 2x+CCC是常数

xndx=xn+1n+1+C1xdx=lnx+C \int x^ndx = \frac{x^{n+1}}{n+1} + C \\ \int \frac{1}{x}dx = ln|x| + C

试计算sin2xcosxdx\int \sin^2x \cos x dx

u(x)=sinxdudx=cosxdu=cosxdxu2du=u33+Cu再替换回sinx13(sinx)3+C u(x) = \sin x \\ \frac{du}{dx} = \cos x \\ du = \cos xdx \\ \int u^2du = \frac{u^3}{3} + C \\ 把u再替换回\sin x \\ \frac{1}{3}(\sin x)^3 + C

# 定积分

04xdx=x22+C04=(422+C)(022+C)=8 \int_0^4 xdx = \left. \frac{x^2}{2} + C \right|_0^4 = (\frac{4^2}{2} + C) - (\frac{0^2}{2} + C ) = 8

# 定积分

# 微积分基本定理

F(x) 为函数 f(x) 的不定积分

abf(x)dx=F(b)F(a) \int_a^b f(x)dx = F(b) - F(a) \\\\

下式中,无论aa为何值都不影响结果

ddxaxf(t)dt=f(x) \frac{d}{dx}\int_a^x f(t)dt = f(x)

# 定积分基本法则

1.abf(x)dx=baf(x)dx2.abcf(x)dx=cabf(x)dx3.acf(x)dx=abf(x)dx+bcf(x)dx \begin{align} &1. \int_a^b f(x)dx = -\int_b^a f(x)dx \\ &2. \int_a^b cf(x)dx = c\int_a^bf(x)dx \\ &3. \int_a^c f(x)dx = \int_a^b f(x)dx + \int_b^c f(x)dx \end{align}

例: 计算 21xdx\int_{-2}^1 |x| dx

21xdx=20xdx+01xdx=52 \int_{-2}^1 |x| dx = \int_{-2}^0 |x|dx + \int_0^1 |x|dx = \frac{5}{2}

# 指数和对数

ln(ab)=lna+lnbln(ab)=blnaln(1a)=lna \ln(ab) = \ln a + \ln b \\ \ln(a^b) = b\ln a \\ \ln(\frac{1}{a}) = -\ln a

试证明:ln3ln2=log23\frac{\ln 3}{\ln 2} = \log_2^3

x=ln3ln2xln2=ln3ln(2x)=ln3eln(2x)=eln32x=3x=log23 \begin{align} & x = \frac{\ln 3}{\ln 2}\\ & x\ln 2 = \ln 3 \\ & \ln(2^x) = \ln 3 \\ & e^{\ln(2^x)} = e^{\ln 3} \\ & 2^x = 3 \\ & x = \log_2^3 \end{align}

ddx(ex)=exexdx=ex+Cddx(lnx)=1x🌟:ddx(lng(x))=gg(x)🌰:ddx(ln(x37))=3x2x37🌟:ddx(ax)=axlna(a为常数)📜:a=elnaax=(elna)x=exlna=elnaxddx(ax)=ddx(elnax)=elnaxddx(xlna)=elnaxlna=axlna \frac{d}{dx}(e^x) = e^x \\ \int e^xdx = e^x + C \\ \frac{d}{dx}(\ln x) = \frac{1}{x} \\ \begin{align} &🌟: \frac{d}{dx}(\ln g(x)) = \frac{g^{\prime}}{g(x)} \\ &🌰: \frac{d}{dx}(\ln (x^3-7)) = \frac{3x^2}{x^3-7} \end{align}\\\\ \begin{align} 🌟:& \frac{d}{dx}(a^x) = a^x\ln a \quad(a为常数) \\\\ 📜:& a = e^{\ln a} \\ & a^{x} = (e^{\ln a})^x = e^{x\ln a} = e^{\ln a^x} \\ & \begin{align} \frac{d}{dx}(a^x) &= \frac{d}{dx}(e^{\ln a^x}) \\ &= e^{\ln a^x} \frac{d}{dx}(x\ln a) \\ &= e^{\ln a^x} \ln a \\ &= a^x \ln a \end{align} \end{align}

logbx\log_b^x微分,即y=logbxy = \log_b^x,求dydx\frac{dy}{dx}

变成隐函数 by=xb^y = x,对xx进行微分,把yy看做是xx的函数

ddx(ax)=axlnabylnbdydx=1dydx=1bylnb=1xlnbddx(logbx)=1xlnb \begin{align} & \because \frac{d}{dx}(a^x) = a^x\ln a \\ & \therefore b^y\ln b\frac{dy}{dx} = 1 \\ & \frac{dy}{dx} = \frac{1}{b^y\ln b} = \frac{1}{x\ln b} \\ & \therefore \frac{d}{dx}(\log_b^x) = \frac{1}{x\ln b} \end{align}

🌟ddx(lnx)=1x1xdx=lnx+C 🌟 \\ \frac{d}{dx}(\ln x) = \frac{1}{x} \\ \int \frac{1}{x}dx = \ln |x| + C

试求:tanxdx\int \tan x dx

tanxdx=sinxcosxdxu=cosx,du=sinxdxsinxcosxdx=1udu=lnu+C=lncosx+C=ln1cosx+C=lnsecx+C \int \tan xdx = \int \frac{\sin x}{\cos x} dx\\ 令 u = \cos x , du = -\sin x dx \\ \int \frac{\sin x}{\cos x} dx = \int \frac{-1}{u}du = -\ln |u| + C \\ = -\ln |\cos x| + C = \ln \frac{1}{|\cos x|} +C = \ln |\sec x| + C

# 对数微分法

f(x)=(x23)(x34)(x75)(x26)f(x) = (x^2 -3)(x^3 - 4 )(x^7 -5 )(x^2-6)的导数

:lnf(x)=ln((x23)(x34)(x75)(x26))=ln(x23)+ln(x34)+ln(x75)+ln(x26)对两端微分f(x)f(x)=2xx23+3x2x34+7x6x75+2xx26f(x)=f(x)(2xx23+3x2x34+7x6x75+2xx26)=(x23)(x34)(x75)(x26)(2xx23+3x2x34+7x6x75+2xx26) \begin{align} &解:\\ &\begin{align} \ln f(x) &= \ln ((x^2 -3)(x^3 - 4 )(x^7 -5 )(x^2-6)) \\ &= \ln(x^2-3) + \ln(x^3 -4) + \ln(x^7 -5 ) + \ln(x^2 -6) \end{align} \\ &对两端微分 \\ &\begin{align} \frac{f^{\prime}(x)}{f(x)} = \frac{2x}{x^2-3} + \frac{3x^2}{x^3-4} + \frac{7x^6}{x^7-5} + \frac{2x}{x^2-6} \end{align} \\ &\begin{align} f^{\prime}(x) &= f(x)(\frac{2x}{x^2-3} + \frac{3x^2}{x^3-4} + \frac{7x^6}{x^7-5} + \frac{2x}{x^2-6}) \\ &= (x^2 -3)(x^3 - 4 )(x^7 -5 )(x^2-6)(\frac{2x}{x^2-3} + \frac{3x^2}{x^3-4} + \frac{7x^6}{x^7-5} + \frac{2x}{x^2-6}) \end{align} \end{align}

# 积分技巧

# 分部积分法

udv=uvvdu \int udv = uv - \int vdu

例子:求解xlnxdx\int x\ln x dx

let:u=lnx,dv=xdxthen:du=1xdx,v=x22xlnxdx=udv=uvvdu=x22lnxx22(1x)dx=x22lnxx2dx=x22lnxx24+C \begin{align} & let:\\ & u = \ln x , dv = xdx \\ & then:\\ & du = \frac{1}{x}dx , v = \frac{x^2}{2} \\ & \int x\ln x dx = \int udv = uv - \int vdu \\ & = \frac{x^2}{2}\ln x - \int \frac{x^2}{2}(\frac{1}{x})dx \\ & = \frac{x^2}{2}\ln x - \int \frac{x}{2}dx \\ & = \frac{x^2}{2}\ln x - \frac{x^2}{4} + C \end{align}

例子:求lnxdx\int \ln x dx

let:u=lnx,dv=dxthen:du=1xdx,v=xlnxdx=uvvdu=xlnx1dx=xlnxx+C \begin{align} & let: \\ & u = \ln x , dv = dx \\ & then: \\ & du = \frac{1}{x}dx, v = x \\\\ & \int \ln x dx = uv - \int vdu \\ &= x\ln x - \int 1dx = x\ln x -x + C \end{align}

如何决定哪个应该是uu,那个应该是dvdv?

1.dvdv必须选择能积分的项
2.选择好以后,对出现的vdu\int vdu进行求解,如果比原来的积分更难,可以尝试其他的uudvdv的组合

# 三角代换

试计算:

1(1x2)dx\int \frac{1}{\sqrt{(1-x^2)}}dx

假设x=sinθx = \sin \theta (不会有问题,因为1x201-x^2\ge 0,所以0x210 \le x^2 \le 1)

1x2=1sin2θ=cos2θ=cosθdxdθ=cosθdx=cosθdθ11x2dx=1cosθcosθdθ=1dθ=θ+Cx=sinθθ=arcsinx11x2dx=arcsinx+C \begin{align} & \sqrt{1-x^2} = \sqrt{1-\sin^2\theta} = \sqrt{\cos ^2\theta} = \cos \theta \\ & \frac{dx}{d\theta} = \cos \theta \\ & dx = \cos\theta d\theta \\ & \int \frac{1}{\sqrt{1-x^2}}dx = \int \frac{1}{\cos \theta}\cos \theta d\theta = \int 1d\theta = \theta + C \\ & x = \sin\theta \\ & \theta = \arcsin x \\ & \int \frac{1}{\sqrt{1-x^2}}dx = \arcsin x + C \end{align}

试计算:

14+x2dx\int \frac{1}{4+x^2}dx

letx=2tanθθ=arctanx214+x2dx=14(1+tanθ2)dx=14sec2θ2sec2θdθ=12θ+C=12arctanx2+C let \,{\rm x}= 2\tan\theta \\ \theta = \arctan\frac{x}{2} \int \frac{1}{4+x^2}dx = \int \frac{1}{4(1+\tan\theta^2)}dx \\ = \int \frac{1}{4\sec^2\theta}2\sec^2\theta d\theta = \frac{1}{2}\theta + C = \frac{1}{2}\arctan\frac{x}{2} + C

# 部分分式积分法

3x1x2+x2dx\int \frac{3x-1}{x^2 + x -2}dx

3x1x2+x2dx=(23x1+73x+2)dx=23lnx1+73lnx+2+C \int \frac{3x-1}{x^2 + x -2}dx =\int \left( \frac{\frac{2}{3}}{x-1} + \frac{\frac{7}{3}}{x+2} \right) dx \\ = \frac{2}{3} \ln |x-1| + \frac{7}{3}\ln |x+2| + C