# 矩阵及其运算

# 线性方程组和矩阵

{a11x1+a12x1++a1nxn=b1a21x1+a22x1++a2nxn=b2am1x1+am2x1++amnxn=bm(1){a11x1+a12x1++a1nxn=0a21x1+a22x1++a2nxn=0am1x1+am2x1++amnxn=0(2) \begin{dcases} a_{11}x_1 + a_{12}x_1 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_1 + \cdots + a_{2n}x_n = b_2 \\ \cdots \\ a_{m1}x_1 + a_{m2}x_1 + \cdots + a_{mn}x_n = b_m \\ \end{dcases} \qquad (1) \\ \begin{dcases} a_{11}x_1 + a_{12}x_1 + \cdots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_1 + \cdots + a_{2n}x_n = 0 \\ \cdots \\ a_{m1}x_1 + a_{m2}x_1 + \cdots + a_{mn}x_n = 0 \\ \end{dcases} \qquad (2)

(1)(1)式中b1,b2,,bmb_1,b_2,\cdots,b_m不全为 0 的时候,线性方程组叫n 元非齐次线性方程组
全为 0 的时候就是(2)(2)式,叫做n 元齐次线性方程组

对于齐次线性方程组一定有零解,即x1=x2==xn=0x_1 = x_2 = \cdots = x_n = 0
其余的解叫非 0 解,但是非 0 解不一定存在

对于线性方程组需要讨论以下问题
(1)是否有解
(2)解是否唯一
(3)如果有多个解,如何求出所有的解
这几个问题的答案完全取决于 m×nm \times n个系数以及右端的常数项b1,b2,b3,,bmb_1,b_2,b_3,\cdots,b_m 所构成的mmn+1n+1列的矩形数表

a11a12a1nb1a21a22a2nb2am1am2amnbm \begin{matrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{matrix}

对于
齐次线性方程组(2)(2),相应的答案也完全取决于它的m×nm\times n个系数aija_{ij}所构成的mmnn列的矩形数表

a11a12a1na21a22a2nam1am2amn \begin{matrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{matrix}

由此引入了矩阵的概念

定义:由 m×nm\times n个数aija_{ij}排成的mmnn列的数表称为m×nm\times n矩阵,记作

Am×n=(a11a12a1na21a22a2nam1am2amn) A_{m\times n} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}

aija_{ij}位于矩阵AA的第iijj列,称为矩阵AA(i,j)(i,j)元,以数aija_{ij}(i,j)(i,j)元的矩阵可以简称为(aij)(a_{ij})(aij)m×n(a_{ij})_{m\times n}

元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵

行数列数都等于nn的矩阵称为nn阶方阵,也记作AnA_n
只有一行的矩阵叫行矩阵,又称行向量
只有一列的矩阵叫列矩阵,又称列向量

行数和列数相同的矩阵叫同型矩阵,同型矩阵对应元素相等,则矩阵相等
元素都是零的矩阵称作零矩阵,记作OO注意不同型的零矩阵是不同的

对于下列线性方程组

{a11x1+a12x1++a1nxn=b1a21x1+a22x1++a2nxn=b2am1x1+am2x1++amnxn=bm \begin{dcases} a_{11}x_1 + a_{12}x_1 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_1 + \cdots + a_{2n}x_n = b_2 \\ \cdots \\ a_{m1}x_1 + a_{m2}x_1 + \cdots + a_{mn}x_n = b_m \\ \end{dcases}

A=(aij)A=(a_{ij})称为系数矩阵,x=(x1x2xn)x=\begin{pmatrix}x_1 \\ x_2 \\ \vdots \\ x_n\end{pmatrix}称为未知数矩阵,b=(b1b2bn)b=\begin{pmatrix}b_1 \\ b_2 \\ \vdots \\ b_n\end{pmatrix} 称为常数项矩阵
B=a11a12a1nb1a21a22a2nb2am1am2amnbmB=\begin{matrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{matrix}称为增广矩阵

对角方阵是指从左上角到右下角的直线(对角线)以外的元素都是 0 的矩阵,记作

Λ=(λ1000λ2000λn)=diag(λ1,λ2,,λn) \Lambda = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots &\lambda_n \end{pmatrix} = diag(\lambda_1,\lambda_2,\cdots,\lambda_n)

λ1=λ2==λn=1\lambda_1=\lambda_2=\cdots=\lambda_n=1时,其对应的nn阶方阵叫做单位矩阵,记作EE

# 矩阵的运算

# 矩阵加法

两个同型矩阵才能进行加法运算,假设有俩m×nm\times n矩阵A=(aij)A=(a_{ij})B=(bij)B=(b_ij),那么矩阵A+BA+B规定为

A+B=(a11+b11a12+b12a1n+b1na21+b21a22+b22a2n+b2nam1+bm1am2+bm2amn+bmn) A+B = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \\ \end{pmatrix}

同型矩阵加法满足的运算规律

A+B=B+A(A+B)+C=A+(B+C) \begin{align} A+B&=B+A \\ (A+B)+C&=A+(B+C) \end{align}

设矩阵A=(aij)A = (a_{ij}) ,记 A=(aij)-A = (-a_{ij}) A-A称为矩阵AA的负矩阵,显然有A+(A)=OA + (-A) = O
由此规定矩阵的减法为AB=A+(B)A - B = A + (-B)

# 数与矩阵相乘

λ\lambda 与矩阵AA的乘积记作λA\lambda A或者AλA\lambda,规定为

λA=Aλ=(λa11λa12λa1nλa21λa22λa2nλam1λam2λamn) \lambda A = A \lambda = \begin{pmatrix} \lambda a_{11} & \lambda a_{12} & \cdots & \lambda a_{1n}\\ \lambda a_{21} & \lambda a_{22} & \cdots & \lambda a_{2n}\\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{m1} & \lambda a_{m2} & \cdots &\lambda a_{mn} \\ \end{pmatrix}

数乘满足的运算规律

(λμ)A=λ(μA)(λ+μ)A=λA+μAλ(A+B)=λA+λB \begin{align} (\lambda \mu)A &= \lambda(\mu A) \\ (\lambda + \mu)A &= \lambda A + \mu A \\ \lambda (A+B) &= \lambda A + \lambda B \\ \end{align}

矩阵加法和数乘统称为矩阵的线性运算

# 矩阵与矩阵相乘

{y1=a11x1+a12x2+a13x3y2=a21x1+a22x2+a23x3(1){x1=b11t1+b12t2x2=b21t1+b22t2x3=b31t1+b32t2(2) \begin{align*} &\begin{dcases} y_1 = a_{11}x_1 + a_{12}x_2 + a_{13}x_3 \\ y_2 = a_{21}x_1 + a_{22}x_2 + a_{23}x_3 \end{dcases} \qquad(1) \\ \\ &\begin{dcases} x_1 = b_{11}t_1 + b_{12}t_2 \\ x_2 = b_{21}t_1 + b_{22}t_2 \\ x_3 = b_{31}t_1 + b_{32}t_2 \end{dcases} \qquad(2) \end{align*}

t1,t2t_1,t_2y1,y2y_1,y_2的线性变换,得

{y1=(a11b11+a12b21+a13b31)t1+(a11b12+a12b22+a13b32)t2y2=(a21b11+a22b21+a23b31)t1+(a21b12+a22b22+a23b32)t2(3) \begin{dcases} y_1 = (a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31})t_1 + (a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32})t_2 \\ y_2 = (a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31})t_1 + (a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32})t_2 \\ \end{dcases} \qquad(3)

我们把线性变换33叫做线性变换(1)(1)(2)(2)的乘积,相应把(3)(3)对应的矩阵定义为(1),(2)(1),(2)所对应矩阵的乘积

(a11a12a13a21a22a23)(b11b12b21b22b31b32)=(a11b11+a12b21+a13b31a11b12+a12b22+a13b32a21b11+a22b21+a23b31a21b12+a22b22+a23b32) \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \\ \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} \\ a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} \end{pmatrix}

定义,设A=(aij)A=(a_{ij})是一个m×sm\times s矩阵,B=(bij)B=(b_{ij})是一个s×ns\times n矩阵,那么规定矩阵AA与矩阵BB的乘积是一个
m×nm\times n矩阵C=(cij)C=(c_{ij})

矩阵乘法不满足交换律,但是满足结合律和分配律(假设运算都是可行的)

(AB)C=A(BC)λ(AB)=(λA)B=A(λB)A(B+C)=AB+AC(B+C)A=BA+CAEA=AE=A \begin{align} (AB)C &= A(BC) \\ \lambda (AB) &= (\lambda A)B = A(\lambda B) \\ A(B+C) &= AB + AC \\ (B+C)A &= BA + CA \\ EA &= AE = A \end{align}

λE\lambda E称为纯量阵

矩阵的幂定义为:A1=A,A2=A1A1,,Ak+1=AkA1A^1 = A, A^2 = A^1A^1,\cdots,A^{k+1} = A^kA^1AkA^kkkAA连乘,显然只有方阵的幂才有意义

矩阵的幂满足的运算规律 : AkAl=Ak+l(Ak)l=AklA^kA^l = A^{k+l},(A^k)^l = A^{kl}

对于两个nn阶矩阵AABB,一般来说(AB)kAkBk(AB)^k\neq A^kB^k,只有当AABB可交换的时候,才有(AB)k=AkBk(AB)^k = A^kB^k(A+B)2=A2+2AB+B2,(AB)(A+B)=A2B2(A+B)^2=A^2+2AB+B^2,(A-B)(A+B) = A^2 - B^2 这俩公式,也只有当 AABB 可交换的时候才成立

# 矩阵的转置

把矩阵AA的行换成同序数的列得到一个新的矩阵,叫做AA转置矩阵

例如

A=(120311),AT=(132101) A = \begin{pmatrix} 1 & 2 & 0 \\ 3 & -1 & 1 \end{pmatrix}, A^T = \begin{pmatrix} 1 & 3 \\ 2 & -1 \\ 0 & 1 \end{pmatrix}

转置满足的运算规律

(AT)T=A(A+B)T=AT+BT(λB)T=λAT(AB)T=BTAT \begin{align} (A^T)^T &= A \\ (A+B)^T &= A^T + B^T \\ (\lambda B)^T &= \lambda A^T \\ (AB)^T &= B^TA^T \end{align}

AAnn 阶方阵,如果满足AT=AA^T=A,即aij=ajia_{ij} = a_{ji} ,那么 AA 称为对称矩阵

# 方阵的行列式

nn阶方阵AA的元素构成的行列式(各个元素位置不变),称为方阵AA的行列式,记作detAdetAA|A|

nn阶方阵是n2n^2个数按一定方式排列成的数表,而nn阶行列式则是数表里的数按一定的运算规律法则所确定的一个数

AA确定A|A|的这个运算满足下述运算规律(AABBnn阶方阵,λ\lambda是常数)

AT=AλA=λnAAB=AB=BA(1) \begin{align} |A^T| &= |A|\\ |\lambda A| &= \lambda^n |A| \\ |AB| &= |A||B| = |BA| \qquad(1) \end{align}
证明(1)

构造 D=AOEB=a11a1200a21a220010b11b1201b21b22D = \begin{vmatrix} A & O \\ -E & B\end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ -1 & 0 & b_{11} & b_{12} \\ 0 & -1 & b_{21} & b_{22} \end{vmatrix},有D=AB|D| = |A||B|

D=c3+b11c1+b21c2a11a12a11b11+a12b210a21a22a21b11+a22b210100b12010b22=c4+b12c1+b22c2a11a12a11b11+a12b21a11b12+a12b22a21a22a21b11+a22b21a21b12+a22b2210000100=AXEO \begin{align*} D&\xlongequal{c_3+b_{11}c_1+b_{21}c_2} \begin{vmatrix} a_{11} & a_{12} & a_{11}b_{11} + a_{12}b_{21} & 0 \\ a_{21} & a_{22} & a_{21}b_{11} + a_{22}b_{21} & 0 \\ -1 & 0 & 0 & b_{12} \\ 0 & -1 & 0 & b_{22} \end{vmatrix} \\ &\xlongequal{c_4+b_{12}c_1+b_{22}c_2} \begin{vmatrix} a_{11} & a_{12} & a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21} & a_{22} & a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{vmatrix} \\ &= \begin{vmatrix} A & X \\ -E & O \end{vmatrix} \end{align*}

可以看出 X=ABX = AB,最后再对行列式进行两次对换 r1r3,r2r4r_1\leftrightarrow r_3,r_2\leftrightarrow r_4

D=(1)2AXEO=(1)2EX=X=ABD = (-1)^2\begin{vmatrix}A & X \\ -E & O\end{vmatrix} = (-1)^2|-E||X| = |X| = |AB|

# 伴随矩阵

行列式A|A|的各个元素的代数余子式AijA_{ij}所构成的如下矩阵称为矩阵AA的伴随矩阵,简称伴随阵

A=(A11A21An1A12A22An2A1nA2nAnn) A^{\ast} = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \\ \end{pmatrix}

伴随矩阵有如下性质 AA=AA=AEAA^{\ast}=A^{\ast}A = |A|E

# 逆矩阵

定义: 对于 n 阶矩阵 A,如果有一个矩阵 B 使得 AB=BA=EAB = BA = E,则称AA是可逆的,并把矩阵BB称为AA的逆矩阵,可逆矩阵都是唯一的,AA的逆矩阵记作A1A^{-1}

# 定理

定理 1:若矩阵AA可逆,则A0|A|\neq0

定理 2:若A0|A|\neq0,则矩阵AA可逆,且A1=1AAA^{-1}=\frac{1}{|A|}A^{\ast}

A=0|A|=0时,AA称为奇异矩阵,否则称为非奇异矩阵,可逆矩阵就是非奇异矩阵

推论:若AB=EAB=EBA=EBA=E,则B=A1B=A^{-1}

# 逆矩阵的用途

# 例 1

已知A,B,CA,B,C,求XX使得AXB=CAXB=C

解:

A1AXBB1=A1CB1X=A1CB1 \begin{align} A^{-1}AXBB^{-1} &= A^{-1}CB^{-1} \\ X &= A^{-1}CB^{-1} \end{align}

# 例 2

已知P=(1214),Λ=(1002)P=\begin{pmatrix}1 & 2 \\ 1 & 4 \end{pmatrix},\Lambda=\begin{pmatrix}1 & 0 \\ 0 & 2 \end{pmatrix},且AP=PΛAP=P\Lambda,求AnA^n

解:

A=PΛP1A2=PΛP1PΛP1=PΛ2P1An=PΛnP1Λn=(1002n)An=(22n2n122n+12n+11) \begin{align} A &= P\Lambda P^{-1} \\ A^2 &= P\Lambda P^{-1}P\Lambda P^{-1} = P\Lambda^2 P^{-1} \\ &\cdots \\ A^n &= P\Lambda^n P^{-1} \\ \Lambda^n &= \begin{pmatrix}1&0\\0&2^n\end{pmatrix} \\ A^n &= \begin{pmatrix} 2-2^n & 2^n -1 \\ 2-2^{n+1} & 2^{n+1} - 1 \end{pmatrix} \end{align} \\ \begin{align} \end{align}

定义φ(A)=a0E+a1A++amAm\varphi(A)=a_0E + a_1A + \cdots + a_mA^mφ(A)\varphi(A)称为矩阵AAmm次多项式

我们常用例2的方式来计算AA的多项式φ(A)\varphi(A)

如果A=PΛP1A = P\Lambda P^{-1},则Ak=PΛkP1A^k = P\Lambda^kP^{-1},从而

φ(A)=a0E+a1A++amAm=Pa0EP1+Pa1ΛP1++PamΛmP1=Pφ(Λ)P1 \begin{align} \varphi(A) &= a_0E + a_1A + \cdots + a_mA^m \\ &= Pa_0EP^{-1} + Pa_1\Lambda P^{-1} + \cdots + Pa_m\Lambda^m P^{-1} \\ &=P\varphi(\Lambda)P^{-1} \end{align}

如果 Λ=diag(λ1,λ2,,λn)\Lambda = diag(\lambda_1,\lambda_2,\cdots,\lambda_n),则Λ=diag(λ1k,λ2k,,λnk)\Lambda = diag(\lambda_1^k,\lambda_2^k,\cdots,\lambda_n^k)

从而

φ(Λ)=a0E+a1Λ++amΛm=a0(100010001)+a1(λ1000λ2000λn)++am(λ1m000λ2m000λnm)=(φ(λ1)000φ(λ2)000φ(λn)) \begin{align} \varphi(\Lambda) &= a_0E + a_1\Lambda + \cdots + a_m\Lambda_m \\ &=a_0\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots &1 \end{pmatrix} + a_1\begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots &\lambda_n \end{pmatrix} + \cdots + a_m\begin{pmatrix} \lambda_1^m & 0 & \cdots & 0 \\ 0 & \lambda_2^m & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots &\lambda_n^m \end{pmatrix} \\ &=\begin{pmatrix} \varphi(\lambda_1) & 0 & \cdots & 0 \\ 0 & \varphi(\lambda_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots &\varphi(\lambda_n) \end{pmatrix} \end{align}

上式表明当Λ\Lambdann阶对角矩阵的时候,φ(A)\varphi(A)也是n阶对角矩阵,且他的第ii个对角元是φ(λi)\varphi(\lambda_i),于是原来的运算就归结为数的多项式运算,给计算带来很大的方便

但是怎么构造PPΛ\Lambda

# 克拉默法则

克拉默法则:如果线性方程组的系数矩阵AA的行列式不等于零,那么方程组有唯一解

A=a11a1nan1ann0 \begin{align} |A| &= \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} \\ &\ne 0 \end{align}
x1=A1A,x2=A2A,,xn=AnA x_1 = \frac{|A_1|}{|A|}, x_2 = \frac{|A_2|}{|A|}, \cdots, x_n = \frac{|A_n|}{|A|}
Aj=(a11a1,j1b1a1,j+1a1nan1an,j1bnan,j+1ann) A_j = \begin{pmatrix} a_{11} & \cdots & a_{1,j-1} & b_1 & a_{1,j+1} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{n,j-1} & b_n & a_{n,j+1} & \cdots & a_{nn} \end{pmatrix}
证明:
Ax=bx=A1b(x1x2xn)=1A(A11A21An1A12A22An2A1nA2nAnn)(b1b2bn)=1A(b1A11+b2A21++bnAn1b1A12+b2A22++bnAn2b1A1n+b2A2n++bnAnn)xj=1A(b1A1j+b2A2j++bnAnj)=1AAj \begin{align} & Ax=b \\ & x=A^{-1}b \\ &\begin{align} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} &= \frac{1}{|A|}\begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \cdots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \\ \end{pmatrix} \begin{pmatrix} b_1\\ b_2\\ \vdots\\ b_n \end{pmatrix} \\\\ &= \frac{1}{|A|}\begin{pmatrix} b_1A_{11} + b_2A_{21} + \cdots + b_nA_{n1} \\ b_1A_{12} + b_2A_{22} + \cdots + b_nA_{n2} \\ \vdots \\ b_1A_{1n} + b_2A_{2n} + \cdots + b_nA_{nn} \\ \end{pmatrix} \end{align} \\\\ &x_j = \frac{1}{|A|}(b_1A_{1j} + b_2A_{2j} + \cdots + b_nA_{nj}) \\\\ &=\frac{1}{|A|}|A_j| \end{align}

bnb_n 位于AjA_j矩阵的(n,j)(n,j),再结合行列式的性质:行列式等于它任一行或者列的各个元素和其对应的代数余子式乘积之和,由此可以完成从b1A1j+b2A2j++bnAnjb_1A_{1j} + b_2A_{2j} + \cdots + b_nA_{nj}Aj|A_j|的推导

# 矩阵分块法

对于行数列数比较高的矩阵AA,运算时通常采用分块法,使大矩阵的运算化成小矩阵的运算,将矩阵AA用若干条纵线和横线划分成多个小矩阵,每个矩阵称为子块,以子块为元素的形式上的矩阵称为分块矩阵

AAnn阶方阵,若AA的分块矩阵只有在对角线上有非零子块,其余子块都为零矩阵,且在对角线上的子块都是方阵,即

A=(A1OOOA2OOOAs) A = \begin{pmatrix} A_1 & O &\cdots & O \\ O & A_2 &\cdots & O \\ \vdots &\vdots &\ddots & \vdots \\ O & O &\cdots & A_s \\ \end{pmatrix}

其中Ai(i=1,2,,s)A_i(i=1,2,\cdots,s)都是方阵,那么称AA分块对角矩阵
分块对角矩阵的性质如下
A=A1A2A3As|A| = |A_1||A_2||A_3|\cdots|A_s|

Ai0(i=1,2,,s)|A_i|\ne 0(i=1,2,\cdots,s),则A0|A|\ne 0,并有

A1=(A11OOOA21OOOAs1) A^{-1} = \begin{pmatrix} A_1^{-1} & O &\cdots & O \\ O & A_2^{-1} &\cdots & O \\ \vdots &\vdots &\ddots & \vdots \\ O & O &\cdots & A_s^{-1} \\ \end{pmatrix}